6 research outputs found

    The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

    Get PDF
    A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008Comment: Published at IEEE Transactions on Pattern Analysis and Machine Intelligence journa

    The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

    Get PDF
    A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1 over the Internet, 2 in an office environment with desktop PC, and 3 in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008

    Generic parameterization for a pharmacokinetic model to predict Cd concentrations in several tissues of different fish species

    No full text
    10 páginas, 4 figuras, 2 tablasIn the present work, a set of generic parameters was proposed for a pharmacokinetic model, with the objective of predicting Cd concentration in the tissues of diverse fish species under different environmental conditions. Cd concentrations in a number of tissues of Oncorhynchus mykiss and Cyprinus carpio were estimated by a structurally identifiable multicompartmental model (unique solution). The 13 generic parameters of the model comprised exchange rates, tissue-blood partition coefficients, and weight-corrected elimination rate constants accounting for the routes of water respiration, excretion and egestion. On the other hand, absorption efficiencies from water and food were considered to be condition-specific and estimated for each experiment. These two parameters reflected the differences in fish exposure to diet (food type and metal concentration) or water (water chemistry and bioavailable metal concentration). A data set of 27 experiments of Cd bioaccumulation in fish tissues was compiled for model calibration. The selected dynamics on trout and carp were performed under very different experimental conditions, involving water and/or food exposure, different fish weights and exposure concentrations and the presence/absence of depuration periods. Model predicted, for most compartments and experiments, the tendency of Cd dynamics. However, accumulation in liver and kidney was underestimated in approximately a half of the experiments, due mainly to a rapid metallothionein (MT) sequestration phenomena and subsequent saturation on liver and kidney produced under high exposure concentrations. On the other hand, both generic and condition-specific parameter values were in accordance with the values reported in literature when available. Therefore, the results obtained in this work are an initial step indicating that a generic global input parameter set could be applied to physiology-based pharmacokinetic (PBPK) models for estimating Cd accumulation in fish in different types of scenarios.The authors acknowledge the financial support received from the European Union through the LIFE Environment Program (LIFE05 ENV/E000267-BE FAIR) and from the Dirección Xeral de I+D (Xunta de Galicia) (Project SERAGRO, PGIDIT05TAM00201CT). Dr. Amaya Franco-Uría would like to thank MICINN for the support provided by the ‘‘Juan de la Cierva” Subprogram.Peer reviewe

    A multi-compartmental model for estimating metal bioaccumulation in fish

    No full text
    N

    The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

    No full text
    A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition/nsessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either/nmonomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be/navailable for research purposes through the BioSecure Association during 2008.This work has been supported by the European Network of Excellence (NoE) BioSecure—Biometrics for Secure Authentication— and by the National Projects of the Spanish Ministry/nof Science and Technology (TEC2006-13141-C03-03, TEC2006-03617/TCM, TIC2002-04495-C02, and TEC2005-/n07212) and the Italian Ministry of Research. The postdoctoral research of author J. Fierrez is supported by a Marie Curie Outgoing International Fellowship. The authors F. Alonso-Fernandez and M.R. Freire are supported by FPI Fellowships/nfrom Comunidad de Madrid. The author J. Galbally is supported by an FPU Fellowship from Spanish MEC./nAuthors Josef Kittler and Norman Poh are supported by the Advanced Researcher Fellowship PA0022_121477 of the/nSwiss National Science Foundation and by the EU-funded Mobio project grant IST-214324. The author J. Richiardi is/nsupported by the Swiss National Science Foundation
    corecore